

Lessons learned in application of ANC to broadband noise control in vehicles

2nd March 2023

Low Frequency Noise Control

Passive Methods

- Fundamental structural design
 - Not always feasible
- Dynamic absorbers
 - Target specific modes
 - Significant weight penalty
 - Expensive
- Heavy layer
 - Weight penalty
 - Cost penalty

Active Noise Control

- Effective Low Frequency Control
- Light weight
- Can use existing hardware
- Processing Costs Falling
- Does not have to reduce noise!

Physical principle of Active Noise Control

Active noise control relies on **matching** the original and the controlled sound field both

- Temporally (control/ signal processing)
- Spatially (acoustics)

Adaptive Control - FxLMS algorithm

 $w(n+1) = w(n) + \alpha R(n)e(n)$

- Tries to minimize *e(n)*
- Uses a gradient descent approach
- Contains a model of the secondary path
- Uses a step size α
- Higher α gives faster convergence
- Maximum *α* depends on system characteristics

x(n) - reference input, P(z) - transfer characteristics between the reference and error locations, e(n) - error, W(z) - control filters, adaptively calculated by the LMS block S(z) - transfer characteristics of the secondary path (control speakers to error locations), y(n) - control effort signal

Implementation

References x(n)

Error signal *e*(*n*)

Control signal w(z)

0000

Control signal y(n)

Global vs. Local active control

- Global control attempts to control the whole space
- A single controller is used
- Can use the standard vehicle audio system - 4 or 5 loudspeakers in a typical car

- · Local control targets a single occupant
- Each seat can have its own controller
- Requires two loudspeakers in or local to each seat

Typical Computational Load

Full Space Control

- L sources (5)
- M references
- K error signals (5 or more)

Local / Seat Based Control

- L sources (2)
- M references
- K error signals (2)
- N seats (5)

FxLMS Algorithm

> 25M FIR Filter Operations

N x 4M FIR Filter Operations

System References

- Suitable references are key to a successful implementation
- Need to be causal to the noise components in the vehicle
- Need to be in advance of the noise to be controlled
- Points on the vehicle structure are common (suspension etc)
- Microphones can be used in larger cavities

Single Source

- If there is a single source (engine) very few references are required.
- A broadband control algorithm can reduced engine noise using one or two references
- Not as effective as tonal control algorithm but good for steady state control

Broadband Control Algorithm

Tonal Control Algorithm

Road Noise Control – multiple sources

Large number of references can capture most structural transmission paths.

Very good noise reduction

Performance is still good with 8 references

These are simulations however..

Road Noise Control – actual setup

4 References 4 error microphones, 5 Speakers

Microprocessor was not capable of running close to an optimal setup in real time.

Compromised performance

6 to 8 references now typical

Changing Excitation

- Excitation mechanism can change with speed / load
- Structurally transmitted road noise can be less dominant at higher speed
- Airborne road noise
- Generally performance degrades at higher speeds as wind noise increases

Local ARNC	Front right (dBA)	Rear left (dBA)
50 km/h	4.4	6.2
70 km/h	4.1	5.5
100 km/h	2.9	4.1

System attenuation vs Road speed

Reference Selection

- Many potential reference positions
- Sensor cost, system complexity and computational load dictate number used.
- Selection is difficult due to combinations available (6 locations from 40 possible 3,838,380 combinations)
 - Multiple coherence
 - Partial pressure
 - Engineering judgement
- Complicated by selection of target
 - Road surface
 - Operating condition
 - Occupant location

Application to High Speed rain

- Distributed sources over the whole cabin
- Mostly due to aerodynamic noise mechanisms at high speed
- Varies with direction of travel, operating conditions and terrain
- Broadband and tonal components
- Machinery noise (tonal sources)

Noise Reduction at 300 kph

• 30 references microphones, 300 km/h

Controller Parameters

- Convergence speed is critical
- Most real world excitation is non-stationary
 - Changing road surface
 - Changing vehicle speed
- Most reduction occurs in 1st 5 to 10 seconds
- Subjectively difficult to detect
- Turn it off to demonstrate it!

Controller Parameters

- Increasing convergence rate improves performance but can induce instability
- Impulsive excitation can lead to temporary amplification
- Leakage can reduce instability but often at the expense of performance

Loudspeaker Performance

Posed of the second sec

Suitable Response characteristic

<figure>

Measured Response

Flat response Low frequency roll off High Variability Poor low frequency response Poor design Poor installation

Loudspeaker performance

- For local control space constraints require a small speaker.
- Achieving adequate low frequency performance from a small speaker requires careful design.

Loudspeakers - Global vs Local

- Can use the standard vehicle audio system - 4 or 5 loudspeakers in a typical car
- Installation / design critical
- Secondary path varies with occupancy etc
- Greater delay between loud speaker and targets

- Secondary path is more stable
- Very short delay
- Packaging can be challenging
- Low Frequency control

Microphone Location

- Adaptive ANC reduces the noise at the location of the microphones.
- The microphones are inevitably some distance from the occupants ears.
- Virtual or remote microphone techniques can improve performance.
- If distance is too great performance badly impacted

Conclusions

- Active Noise Control can be very effective at reducing low frequency noise
- Global control system is generally less effective but can use existing hardware
- Local control is most effective but requires loudspeakers very local to occupant
- It is difficult to address all noise issue ie road & wind etc
- Convergence speed is critical but can lead to instability
- Main take away
 - Turn it off to demonstrate it!

