

Institute of Sound and Vibration Research

Multi-zone Audio Delivery in Cars: Fundamental Theory and Recent Advances

Filippo Maria Fazi and Wilfried Gallian

02/03/2023

Overview of muti-zone audio delivery

Notation

- $q_{\ell}(\omega)$ driving signal of the ℓ -th loudspeaker
- $p_m(\omega)$ signal of the ℓ -th microphone/control point
- $G_{m\ell}(\omega)$ electroacoustical transfer function between the ℓ -th speaker and the m-th control point

$$p_m(\omega) = \sum_{\ell=1}^{L} G_{m\ell}(\omega) q_{\ell}(\omega)$$

Notation

$$\mathbf{q} = \begin{bmatrix} \mathbf{q}_{1}(\omega), q_{2}(\omega), \dots q_{L}(\omega) \end{bmatrix}^{T}$$
$$\mathbf{p} = \begin{bmatrix} p_{1}(\omega), p_{2}(\omega), \dots p_{N}(\omega) \end{bmatrix}^{T}$$
$$\mathbf{G} = \begin{bmatrix} G_{1,1}(\omega) & \dots & G_{1,L}(\omega) \\ \vdots & \ddots & \vdots \\ G_{N,1}(\omega) & \dots & G_{N,L}(\omega) \end{bmatrix}$$

 $\mathbf{p} = \mathbf{G} \mathbf{q}$

Pressure matching

Kirkeby and Nelson, 1993. "Reproduction of plane wave sound fields", JASA

 $\mathbf{p} = \mathbf{G} \mathbf{q}$

Relation to acoustical holography

Ill-conditioning and Tikhonov Regularization

Array effort $E(\omega) \propto ||\mathbf{q}||^2$

Effort my be very large if **G** is ill-conditioned, leading to unstable solutions.

Cost function with Tikhonov regularization

$$J = \|\mathbf{G} \,\mathbf{q} - \mathbf{p}_T\|^2 + \beta \|\mathbf{q}\|^2$$
$$\mathbf{q}_{opt} = (\mathbf{G}^H \mathbf{G} + \beta \mathbf{I})^{-1} \mathbf{G}^H \mathbf{p}_T$$

Reduces of array effort, but increases error

Kirkeby and Nelson, 1993. "Reproduction of plane wave sound fields", JASA

Acoustic contrast

It is the ratio of the average acoustic potential energy in two zones

$$AC = \frac{\langle E_B \rangle}{\langle E_D \rangle} \approx \frac{\frac{1}{N_B} \sum_m |p_m^{(B)}|^2}{\frac{1}{N_D} \sum_m |p_m^{(D)}|^2}$$

Target to interferer ratio

It is the ratio of the energy of the desired signal and of the interfering signal i a given zone

Acoustic contrast maximisation

• Direct formulation:

Maximise $\|\mathbf{p}_B\|^2$ s.t. $\|\mathbf{p}_D\|^2 = D$ and $\|\mathbf{q}\|^2 \le E$

• Indirect formulation:

Minimise $\|\mathbf{p}_D\|^2$ s.t. $\|\mathbf{p}_B\|^2 = B$ and $\|\mathbf{q}\|^2 \le E$

• Maximise energy difference Maximise $\|\mathbf{p}_B\|^2 - \alpha \|\mathbf{p}_D\|^2$

Choi and Kim, 2002. "Generation of an acoustically bright zone with an illuminated region using multiple sources". *JASA* Elliott, S.J., et al., 2012. "Robustness and regularization of personal audio systems". *TASLP*. Lee, T., et al, 2018, "A Unified Approach to Generating Sound Zones Using Variable Span Linear Filters", ICASSP.

Multi-zone audio delivery in a car

4

- Acoustically challenging environment
- Time-varying system:
 - Number and position of occupants
 - Temperature and Humidity
 - Windows

M. Olsen and M. B. Møller, 2017, "Sound zones: On the effect of ambient temperature variations in feed-forward systems," *Proc. of the 142nd AES Convention*.

Frequency-dependent trim of measured Impulse Responses

M. Ebri, N. Strozzi, F.M. Fazi, A. Farina, and L. Cattani, 2020. "Individual Listening Zone with Frequency-Dependent Trim of Measured Impulse Responses," 149 AES Convention, Paper 10409.

28 October 2020

Frequency-dependent IR trimming

Spectrogram of original IR

Spectrogram of trimmed IR

October 2020

Frequency-dependent IR trimming

Adaptive multi-zone with FxLMS

L. Vindrola, M. Melon and J.-C. Chamard, "Use of the filtered-x least-mean-squares algorithm to adapt personal sound zones in a car cabin," The Journal of the Acoustical Society of America, vol. 150, no. 1779, 2021.

Adaptive multi zone with multi-sensor array

Institute of Sound and Vibration Research

Adaptive multi zone with multi-sensor array

Acoustic contrast before and after passenger movement. Passenger in bright zone.

C. Flint, Z. Francis-Cox, D. Gonsalves, M. Mehhovits, L. Turoff, W. Gallian, F.M. Fazi, 2021, "Advanced car audio system", Group Design Report, University of Southampton.

Head tracking and computer vision

Lexus

Bosch

Continental

Nissan

Active Control with Head Tracking

Elliott, S.J., Jung, W. & Cheer, J., 2018, "Head tracking extends local active control of broadband sound to higher frequencies". *Sci Rep* **8**, 5403.

3D audio with listener tracking

AUDIOSCENIC

The listener is tracked with a camera and new loudspeaker filters are created in real-time to adapt to the user's position. This is crucial for the quality of spatial audio reproduction

Adaptive multi-zone and 3D audio with listener tracking

- Position of car occupants is tracked with one or more cameras
- Personalised 3D audio signals are independently delivered to each occupant
- The algorithm adapts in real-time depending on the number and position of listeners

AUDIOSCENIC

Conclusions

- Theoretical review of establish techniques for multi-zone audio delivery
- Novel solutions for multi-zone audio in cars:
 - Trimming of measured impulse responses
 - Adaptative system based on FxLMS
 - Adaptative system based on multi-sensor array
 - Adaptative system based on listener tracking
- Many open challenges (e.g. psychoacoustics adaptation)
- New technologies have recently been developed stay tuned!